Moore’s law is still the law

New york, Aug. 31: Scientists at Rice University and Hewlett-Packard are reporting this week that they can overcome a fundamental barrier to the continued rapid miniaturization of computer memory that has been the basis for the consumer electronics revolution.

In recent years the limits of physics and finance faced by chip makers had loomed so large that experts feared a slowdown in the pace of miniaturization that would act like a brake on the ability to pack ever more power into ever smaller devices like laptops, smartphones and digital cameras.

But the new announcements, along with competing technologies being pursued by companies like IBM and Intel, offer hope that the brake will not be applied any time soon.

In one of the two new developments, Rice researchers are reporting in Nano Letters, a journal of the American Chemical Society, that they have succeeded in building reliable small digital switches — an essential part of computer memory — that could shrink to a significantly smaller scale than is possible using conventional methods.

More important, the advance is based on silicon oxide, one of the basic building blocks of today’s chip industry, thus easing a move toward commercialization. The scientists said that PrivaTran, a Texas startup company, has made experimental chips using the technique that can store and retrieve information.

These chips store only 1,000 bits of data, but if the new technology fulfills the promise its inventors see, single chips that store as much as today’s highest capacity disk drives could be possible in five years. The new method involves filaments as thin as five nanometers in width — thinner than what the industry hopes to achieve by the end of the decade using standard techniques. The initial discovery was made by Jun Yao, a graduate researcher at Rice. Mr. Yao said he stumbled on the switch by accident.

Separately, HP is to announce on Tuesday that it will enter into a commercial partnership with a major semiconductor company to produce a related technology that also has the potential of pushing computer data storage to astronomical densities in the next decade. HP and the Rice scientists are making what are called memristors, or memory resistors, switches that retain information without a source of power.

“There are a lot of new technologies pawing for attention,” said Richard Doherty, president of the Envisioneering Group, a consumer electronics market research company in Seaford, N.Y. “When you get down to these scales, you’re talking about the ability to store hundreds of movies on a single chip.”

The announcements are significant in part because they indicate that the chip industry may find a way to preserve the validity of Moore’s Law. Formulated in 1965 by Gordon Moore, a co-founder of Intel, the law is an observation that the industry has the ability to roughly double the number of transistors that can be printed on a wafer of silicon every 18 months.

That has been the basis for vast improvements in technological and economic capacities in the past four and a half decades. But industry consensus had shifted in recent years to a widespread belief that the end of physical progress in shrinking the size modern semiconductors was imminent.

IBM, Intel and other companies are already pursuing a competing technology called phase-change memory, which uses heat to transform a glassy material from an amorphous state to a crystalline one and back.

Phase-change memory has been the most promising technology for so-called flash chips, which retain information after power is switched off.

The flash memory industry has used a number of approaches to keep up with Moore’s law without having a new technology. But it is as if the industry has been speeding toward a wall, without a way to get over it.

To keep up speed on the way to the wall, the industry has begun building three-dimensional chips by stacking circuits on top of one another to increase densities. It has also found ways to get single transistors to store more information. But these methods would not be enough in the long run. The new technology being pursued by HP and Rice is thought to be a dark horse by industry powerhouses like Intel, IBM, Numonyx and Samsung. Researchers at those competing companies said that the phenomenon exploited by the Rice scientists had been seen in the literature as early as the 1960s.

Post new comment

<form action="/comment/reply/30690" accept-charset="UTF-8" method="post" id="comment-form"> <div><div class="form-item" id="edit-name-wrapper"> <label for="edit-name">Your name: <span class="form-required" title="This field is required.">*</span></label> <input type="text" maxlength="60" name="name" id="edit-name" size="30" value="Reader" class="form-text required" /> </div> <div class="form-item" id="edit-mail-wrapper"> <label for="edit-mail">E-Mail Address: <span class="form-required" title="This field is required.">*</span></label> <input type="text" maxlength="64" name="mail" id="edit-mail" size="30" value="" class="form-text required" /> <div class="description">The content of this field is kept private and will not be shown publicly.</div> </div> <div class="form-item" id="edit-comment-wrapper"> <label for="edit-comment">Comment: <span class="form-required" title="This field is required.">*</span></label> <textarea cols="60" rows="15" name="comment" id="edit-comment" class="form-textarea resizable required"></textarea> </div> <fieldset class=" collapsible collapsed"><legend>Input format</legend><div class="form-item" id="edit-format-1-wrapper"> <label class="option" for="edit-format-1"><input type="radio" id="edit-format-1" name="format" value="1" class="form-radio" /> Filtered HTML</label> <div class="description"><ul class="tips"><li>Web page addresses and e-mail addresses turn into links automatically.</li><li>Allowed HTML tags: &lt;a&gt; &lt;em&gt; &lt;strong&gt; &lt;cite&gt; &lt;code&gt; &lt;ul&gt; &lt;ol&gt; &lt;li&gt; &lt;dl&gt; &lt;dt&gt; &lt;dd&gt;</li><li>Lines and paragraphs break automatically.</li></ul></div> </div> <div class="form-item" id="edit-format-2-wrapper"> <label class="option" for="edit-format-2"><input type="radio" id="edit-format-2" name="format" value="2" checked="checked" class="form-radio" /> Full HTML</label> <div class="description"><ul class="tips"><li>Web page addresses and e-mail addresses turn into links automatically.</li><li>Lines and paragraphs break automatically.</li></ul></div> </div> </fieldset> <input type="hidden" name="form_build_id" id="form-eb3b6555d7ab0fa6541e1faff8039739" value="form-eb3b6555d7ab0fa6541e1faff8039739" /> <input type="hidden" name="form_id" id="edit-comment-form" value="comment_form" /> <fieldset class="captcha"><legend>CAPTCHA</legend><div class="description">This question is for testing whether you are a human visitor and to prevent automated spam submissions.</div><input type="hidden" name="captcha_sid" id="edit-captcha-sid" value="80545452" /> <input type="hidden" name="captcha_response" id="edit-captcha-response" value="NLPCaptcha" /> <div class="form-item"> <div id="nlpcaptcha_ajax_api_container"><script type="text/javascript"> var NLPOptions = {key:'c4823cf77a2526b0fba265e2af75c1b5'};</script><script type="text/javascript" src="http://call.nlpcaptcha.in/js/captcha.js" ></script></div> </div> </fieldset> <span class="btn-left"><span class="btn-right"><input type="submit" name="op" id="edit-submit" value="Save" class="form-submit" /></span></span> </div></form>

No Articles Found

No Articles Found

No Articles Found

I want to begin with a little story that was told to me by a leading executive at Aptech. He was exercising in a gym with a lot of younger people.

Shekhar Kapur’s Bandit Queen didn’t make the cut. Neither did Shaji Karun’s Piravi, which bagged 31 international awards.